

AERO BOOSTERS

EASA – CAAS ADDITIVE MANUFACTURING WORKSHOP SINGAPORE, 15-16 OCTOBER 2018

LBM LUBE UNIT HOUSING CERTIFICATION APPROACH

L. Schuster

15th october 2018

Referenced documents

Intern

C

Schuster L

Class

Category

Function

Name

Signature

Function

Name

Signature

Function

Name

Signature

For application

For information

Addresses

TVA: BE 0432.618.812 RPM Liège

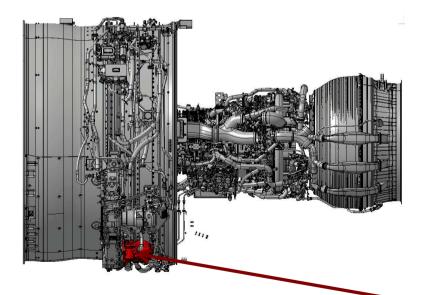
Route de Liers, 121

NATO CODE: B1316 Tel+32 (4) 278 81 11

Belgique

B-4041 HERSTAL (Milmort)

1

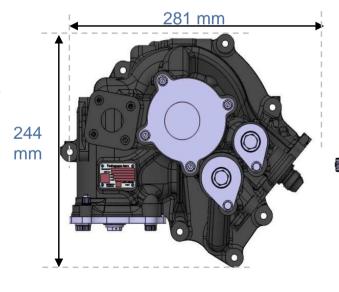

LUBE UNIT DESCRIPTION

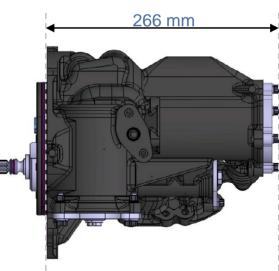
Lubrication Unit – Description #1/2

Lubrication Unit functions:

- Supply functions: supply oil from oil tank to bearing chambers and gears (AGB / TGB)
- ◆ Scavenge functions : scavenge oil from bearing chambers and gears to oil tank
- Driven by Accessory Gearbox (AGB)
- ◆ Protect oil circuit (valves)
- ◆ Filter the oil

56PRE225896.A000

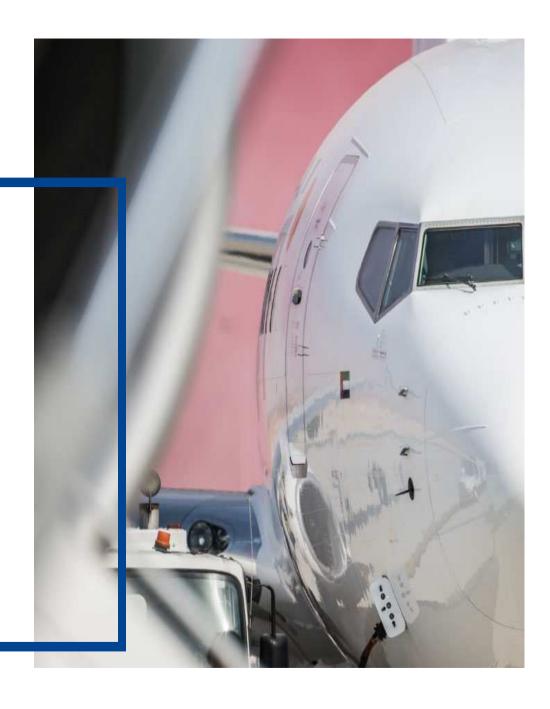

Lubrication

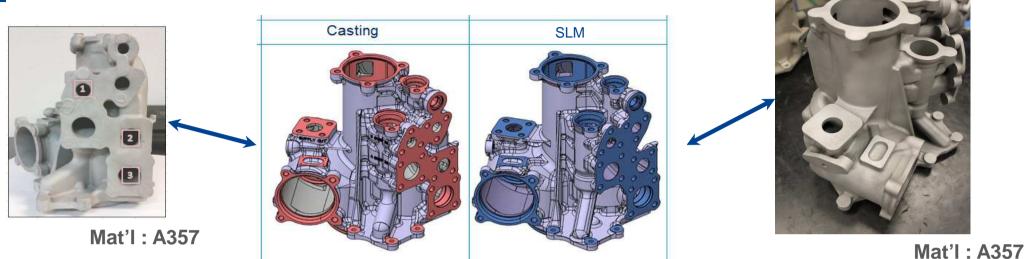

Unit

Lubrication Unit – Description #2/2

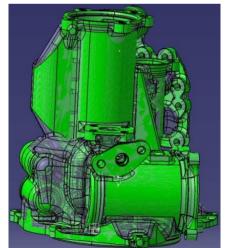
Lubrication unit is composed by:

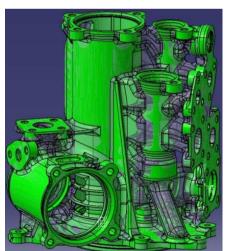
- ◆ Stack-up:
 - > Pumping elements (supply and scavenge)
 - > Spacers (between each pumping element)
 - > Shaft(s)
- ◆ Housing proposed SLM part
 - >
- ◆ Accessories :
 - > Filter cartridge
 - > Strainers
 - > Valves

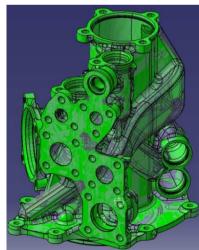


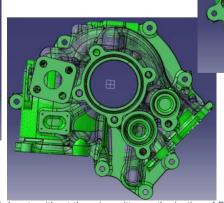

2

LUBE UNIT DESIGN




Lubrication Unit – Description #1/1

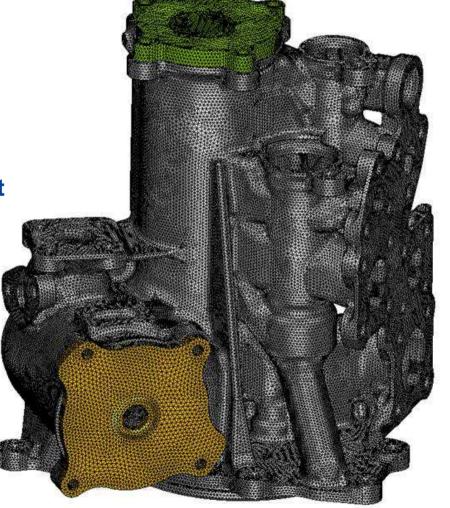



In green, areas shared between casting and SLM; in grey, those that concern only

SLM housing:

56PRE225896.A000

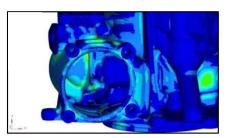
Finite Element Analysis #1/2 Meshing and methodology

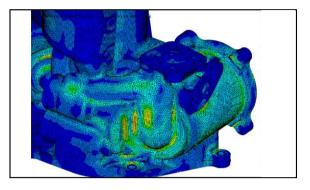

Second degree tetrahedral meshing:

◆ Number of volume elements: 959228

◆ Number of skin elements: 362618

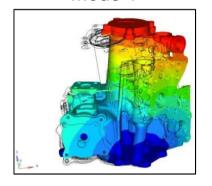
◆ Number of nodes: 1643095


Three loads: Pressure, Vibration, Fan Blade Out

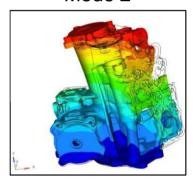


Finite Element Analysis #2/2

Pressure

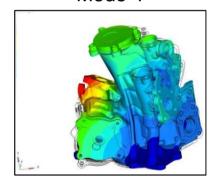


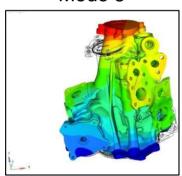
Outside

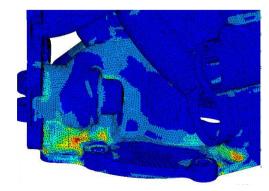


Vibration – Modal Analysis

Mode 1


Mode 2


Mode 3

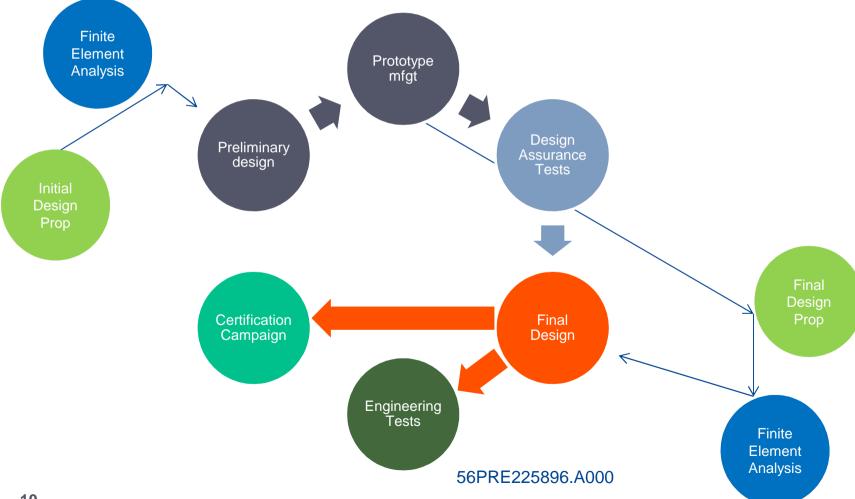

Mode 4

Mode 5

FBO Load

56PRE225896.A000

3


CERTIFICATION

Part Validation #1/1

The project development is planned according to:

Safran processes and legacy

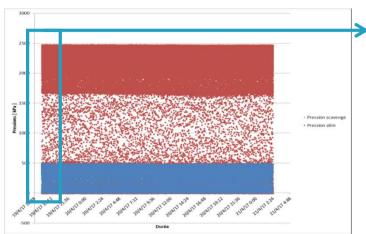
EASA Memorandum dedicated to Additive Manufacturing CM-S-008 Issue 1

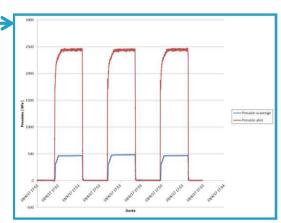
Design AssuranceTesting #1/1

ALM#01

Cyclic Pressure : Equivalent to

Equivalent to Certification rqt:


- 60.000 cycles NWP
- 500 cycles MET
- 500 cycles MWP

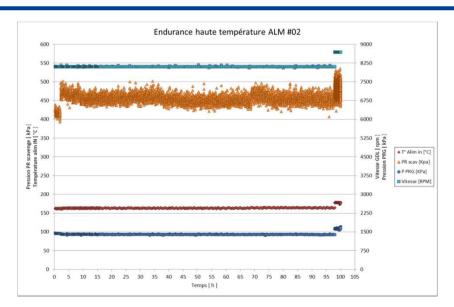


■ 60.000 cycles NWP

Success Criteria:

- FPI post-test
- DER post-test

ALM#02


HT Endurance:

Equivalent to Certification rqt: 97h Duty-Cycles à 162°C (324F)

3h Duty-Cycles à 177°C (351F)

/Success Criteria :

- FPI post-test
- DER post-test

Design Values construction #1/4

Final Design Prop

The Design Office requires the following data

- ◆ Yield strength (T = -55°C (-67F) to 230°C (446F))
- ◆ Ultimate tensile strength (T = -55°C (-67F) to 230°C (446F))
- ◆ LCF R=0 (A=1)
- ◆ HCF R=-1 (A=∞)

Design Values are built from specimens and parts fabricated, with same frozen parameters as lube unit housings. The part is classified as CF2/AFA (N2). The Design Values requirements for such a classified part is

Design Value	Category	Minimum rqt	Comments
Physical (density, CTE,)	IV	1 lot, 2 levels, 2 tests	2 powder suppliers, Up to 9 recycling, over 12 batches
Statical (YS, UTS,)	II	4 lots, ~25 tests (min 4 temp, 4 tests/Temp)	2 powder suppliers, Up to 9 recycling, over 12 batches
Fatigue (LCF, HCF)	III	2 lots, ~15 tests (min 4 level, 4 tests/Level)	2 powder suppliers, Up to 9 recycling, over 12 batches

Design Values construction #2/4

Characteristic	Condition	Test Specification	Specimens geometry			
On specimens	SLM 280 HL, layer thickness	50 μm (2 mil), frozen parame	eters and software, AS7G06, HIP,			
Density	RT	ISO 1183	Half-Cylinder : Ø : 15 mm & L:20 mm			
Thermal expansion	Min LT to Max HT	Internal process (COFRAC accreditation)	Cylinder: Ø:6 mm & L:25 mm Parallelepiped: C:5 mm & L:25 mm			
Young Modulus	Min LT to Max HT					
Yield Strength	Yield Strength Min LT to Max HT ASTM	ASTM-E8	485-920-111-0			
Ultimate Tensile Strength	Min LT to Max HT					
HCF	RT; HT stress ratio R=-1 (A=∞)	ASTM E466	485-920-525-0			
LCF	RT; HT stress ratios R=0 (A=1)	ASTIVI E400	Cylinder			
On components	SLM 280 HL, layer thickness	50 μm (2 mil), frozen parame	eters and software, AS7G06, HIP,			
Real Parts		DAT (Design Assurance Tes Engineering Tests	st)			

Final Design Prop

Design Values construction #3/4

Each production includes	3 Axis
	X
Cylinder specimens	Υ
	Z

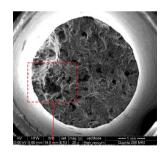
Material Structure
Chemical composition

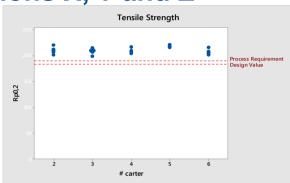
Specimens (tensile & fatigue)

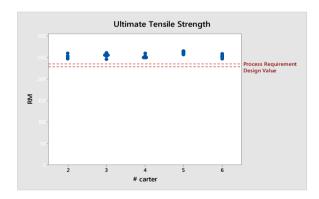
Total	Tensile	Fatigue
Qty of tested specimens	>100	>80

Specimens (tensile & fatigue axis Z)

Design Values construction #4/4


- 14 Lube Units printed for Engineering Test and Certification Campaign
- Over 350 coupons printed in three orthogonal directions X, Y and Z





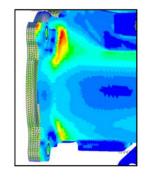
Requirements on tensile test results > design values

Engineering tests #1/2

Engineering tests

Objective: risk mitigation prior to certification tests

High temperature tests : \checkmark



3 x certification duration

Pressure cycle tests:

- ◆ 2 x number of certification cycles without rupture
- ◆ Addition of 2000 cycles at burst pressure until oil leak in the filter housing flange area
- Location of the leak consistant with the FEA

Engineering test (on LEAP 1A engine) #2/2

(598010/3@ test rig PHENIX AFI - Paris)

Engineering Tests	

LU#2 _ 2017 (housing PE033490)								
Endurance Engine Leap 1A 598010/3 @ test rig PHENIX AFI (Paris)		Oil System event	Date					
Installation of SLM LU + 2h20	No event	12/01/2018						
Rotating Time (hh:mm)	512:22		01/06/2018					
Starts:	3004	No event						
Engine Cycles B	2416							
Engine Cycles C1	2487							

/

Engineering Endurance Engine end on June 1st, 2018

SA

Certification Plan #1/2

Certified part

Part Name: Unit Lubrication ::	Certifi	catio	n	T = Test EA = Analysis
CCL Item No.: CCL 1653	Metho		11	= Not Applicable CA = Comparative Analysis
Electrical: No	1			E = Engine SR = System Rig
Rotating Parts: Yes / No		Test		C = Component SC = Sub Component
Aircraft Power: Yes / No		Тур	9	= Not Applicable
Category: 2				G = Compliant per CPC
			CPC	Compliance += per CPC with additional information
				D = Deviates from CPC
Requirements:				Notes:
				Test per §I.2.1 in Appendix I of CPC CRL-1603.
High Temperature	T/EA	С	D	Refer to deviations §3.1.2.
	_	_	-	Test per §I.2.2 in Appendix I of CPC CRL-1603.
2. Low Temperature	Т	С	D	Refer to deviations §3.1.3.
3. Room Temperature	Т	С	G	Test combined with the Contaminated Fluids test (#4)
4 Contaminated Flyids	Т	٠	2	Test combined with the Room Temperature test (#3)
Contaminated Fluids	L'_	С	D	Refer to deviations §3.1.4.
5. Vibration	Т	С	G	Test per §I.2.5 in Appendix I of CPC CRL-1603.
6.1 Impact: Operational Shocks	Т	С	G	Test per §I.2.6 in Appendix I of CPC CRL-1603.
6.2 Impact: Crash Safety	Т	С	G	Test per §I.2.6 in Appendix I of CPC CRL-1603.
7. Sustained acceleration	EA		G	
8. Sand and Dust	EA		G	Environmentally sealed equipment.
9. Fluid Susceptibility	EA		G	Analysis based on external material resistance to Salt spray and Skydrol.
10. Salt Spray	EA		G	Analysis based on external material resistance to Salt spray
11. Fuel System Icing	-		G	Unit, Lubrication is part of the Oil system.
12. Induction Icing	-		G	Unit, Lubrication is not installed in Engine gas path.
13. Fungus	EA	-	G	Analysis based on materials characteristics.
14. Temperature and Altitude	EA		G	Based on High, Low Temperature tests(#1 & #2) and based on Pressure tests (#21 & #22).
15. Thermal Cycle	-	ï	G	Equipment does not contain any electrical component.
16. Explosion Proofness	-	-	G	Equipment does not contain any electrical component.
17. Humidity	1	1	G	Equipment does not contain any electrical component.
18. Water	1	ï	G	Equipment does not contain any electrical component.
19. Pin injection	-	i	G	Equipment does not contain any electrical component.
20. Power Input		i	G	Equipment does not contain any electrical component.
21. Proof Pressure	T/EA	С	D	Test per §I.2.21 in Appendix I of CPC CRL-1603.
22. Burst Pressure.	T/EA	С	D	Test per §I.2.22 in Appendix I of CPC CRL-1603.
23. Pressure Cycling	Т	С	G	Test per §I.2.23 in Appendix I of CPC CRL-1603.
24. Fire	Т	С	G	Test per §I.2.24 in Appendix I of CPC CRL-1603.
25. Rotor Containment	EA		G	Analysis will be addressed in the Certification Report.
26. Spec Test	-	i	G	Only applicable to the Air Turbine Starter

Certification Campaign

AM part

Part Name: Unit, Lubrication: CCL Item No.: CCL#1653 Electrical: NO	Certification Method		n	T = Test EA = Engineering Analysis = Not Applicable CA = Comparative Analysis E = Engine ST = System Test = Not Applicable					
Electrical: NO Rotating Parts: YES Aircraft Power::NO		Test Type			= System est = Not Applicable nt SC = Sub Component				
Çatêgörÿ: 2			СРС	Compliance	G = Compliant per CPC + = per CPC with additional information D = Deviates from CPC				
Requirements:				Notes:					
High Temp. Demonstration		С		Test will be don	e with same parameters as previous lube unit				
2. Low Temp. Demonstration		C		Test will be don	e with same parameters as previous lube unit				
3. Room Temp. Demonstration	CA				ation test conducted on current version 362-074-103-0 (B1316- based on High and Low temperature tests				
Contaminated Fluids	CA			based on certific	ation test conducted on current version 362-074-103-0 (B1316-				
5. Vibration		С		Test will be done with same parameters as previous lube unit					
6.1. Impact: Operational Shocks	7	С		Test will be done with same parameters as previous lube unit					
6.2. Impact: Crash Safety		C		Test will be don	with same parameters as previous lube unit				
7. Sustained acceleration	EA		000 000 000 00	Based on - The structural integrity of the component will be based on the vibratest and also based on - The proper functional behavior of the component will substantiated by analysis identical to the one presented for the current version 074-103-0 (B1316-06163)					
8. Sand and Dust	EA]	Based on material characteristics					
9. Fluid Susceptibility	EA		Will be	design of the alternative Unit, Lubrication and also based on item 10 - Salt Spra					
10. Salt Spray	EA	-	com plete	based on materia	al characteristics				
11. Fuel System Icing		-	d at the						
12. Induction Icing		-	reda						
13. Fungus	EA		ction of CTL	based on the bill fungus	of material of the Unit, Lubrication, stating their resistance to				
14. Temperature and Altitude	EA		OIL	High and Low T	nperature requirement that will be covered by the demonstration of emperature (items 1 and 2) and also altitude requirement will be emonstration of Proof Pressure (item 21).				
15. Thermal Cycle			l						
16. Explosion Proofness									
17. Humidity									
18. Waterproofness			l						
19. Pin injection									
20. Power Input		<u> </u>							
21. Proof Pressure		С		Test will be done	with same parameters as previous lube unit				
22. Burst Pressure.		C		Test will be don	e with same parameters as previous lube unit				
23. Pressure Cycling	Ŧ	C		Test will be don	with same parameters as previous lube unit				
24. Fire		C		Test will be don	e with same parameters as previous lube unit				
25. Rotor Containment	EA			based on casing	geometry and material analysis				
26. Spec Test			l						

Certification Plan #2/2



Certification test

	Certification tests	Completion
\	Proof & Burst	100%
\	High temp.	100%
\	Pressure cycling	100%
\	Vibration	100%
\	Low temp.	100%
\	Fire	100%

4

PROCESS CONTROL

Process control #1/5

■ A first list of significant parameters have been defined based on an existing FMECA used by other Safran group company :

Process	LBM sur AS7G06
Dates de réunion	15/02/2017
Objectifs	Planifier les actions préventives pour les risques majeurs
Participants	Nicolas TABUS, Didier HABERT
Hypothèses	L'AMDEC traitera du procédé de fusion laser et de la gamme associé appliqués à l'AS7G06 Cette AMDEC est basée sur l'AMDEC réalisée par Safran Aircraft Engines sur CoCr28Mo6 et sur notre retour d'expérience sur la plateforme collaborative SUPCHAD
Grille de cotation	Les critères Gravité, Fréquence et Détectabilité seront cotés selon 5 notes : 1 - 3 - 5 - 7 - 10 selon la grille de Cotation jointe

			criticité initiale										
PHASE /	PHASE / OPERATION		EFFET	Grav.	CAUSES	Fréq.	DETECTION	Détect abilité	IPR	N°	ACTIONS Préventives/Correctives	Pilote	Délai mise en œuvre
Désignation	Fonction	Défauts possibles ou connus en regard du critère qualité	Conséquences pour l'utilisateur aval ou final	G	Connues ou possibles	F	contrôles possibles ou existants	D	GxFxD	action	Si IPR>=100 ou si G=10	Nominatif	
	Verifier la composition de la poudre	Granulometrie poudre non conforme	Casse pièce		Erreur fournisseur	1	Pas de contrôle	10	100				
	Vertier la qualité de la poudre	Composition poudre non conforme	Casse piece		Erreur fournisseur	1	Contrôle visuel	7	70				
Contrôle réception poudre		Pas de contrôle	Casse piece		Oubli de la réception	6	Pas de contrôle	6	360	1	Préciser le contrôle dans la fiche d'instruction		
		Mauvais contrôle	Casse pièce		Contrôleur non habilité	1	Durveillance habilitation operateur en continue	3	30				
				19	Defaut machine	1	Contrôle périodique	6	60				
	Otocker is poudre avant utilisation		Casse pièce		Taux d'humidité trop éleve	3	Pas de contrôle	10		2	Intégrer une zone de stockage dédiée avec appareil de mesure (selon Pr)		
		Agrégation de poudre			Température de stockage non adéquate	6	Pas de contrôle	10		2	Intégrer une zone de stockage dédiée avec appareil de mesure (selon Pr)		
				19	Depart feu (poudre réactive)	1	Pas de contrôle	10	100				
Stockage de la poudre		Danger pour l'operateur	Blessure de l'operateur		Inhalation ou ingestion de poudre par l'opérateur	3	Pas de contrôle	10		3	Mettre en place des protections individuelles complètes et une fitration de l'air ambiante plus poussée		
		1		10	Inhalation de gaz dangeureux	1	Alarme machine	3	30				
				10	Pas de protection gazeuse	1	Pas de contrôle	10	100				-
		Oxydation de la poudre	Casse pièce	19	Taux d'humidité trop elevé	1	Pas de contrôle	10	100	-			-
	Obtenir une poudre tamisée	Particules de dimensions trop importantes	Casse piece	10	Taux d'oxygène trop eleve Mailes du tamis endommagées	1	Pas de contrôle Pas de contrôle	10	100				+-
	Enlever un maximum de particules de dimensions excédant la taille des mailles	Poliution par des particules étrangères	Casse piece		Poudre sans protection lors de la préparation machine	1	Pas de contrôle	10	100				
	Excession in this des mailes	enargeres		19	Tamis poliué par des particules étrangères	1	Pas de contrôle	10	100				
Préparation de la poudre avant introduction dans la machine		Danger pour l'opérateur	Blessure de l'operateur	10	Départ feu (poudre réactive) Inhalation ou ingestion de poudre par l'opérateur	5	Pas de contrôle Pas de contrôle	10	888	3	Mettre en place des protections individuelles complètes, appareil de mesure du taux de particules et suivi médicale		
		1		10	Inhalation de gaz dangeureux	1	Alarme machine	3	30				
					Poudre sans protection lors de la preparation								

Process control #2/5

The FMECA has been updated to our process thanks to Safran and Supplier experiences

The significant parameters are

- Melting parameters
 - Layer thickness
 - Laser power
 - Laser speed
 - Laser spot diameter
 - Lasing strategy (hatching distance, fill pattern,...)
- > Machine and build chamber parameters :
 - AM machine (qualification on SLM280 only)
 - Argon pressure
 - Bed temperature
 - Argon flow speed
 - Powder spreading device :
 - Speed
 - Wiper replacement frequency
 - Powder volume per layer

- > Software parameters :
 - Magics and Build Processor software versions
 - step file (part geometry), .stl file, .magics file, .slm file
- > Powder:
 - Granulometry distribution
 - Apparent and tap density
 - Chemical composition
 - Recycling level

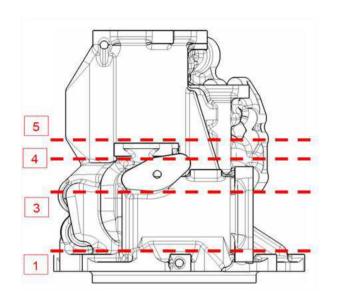
All these parameters are frozen

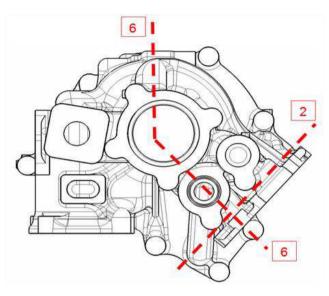
Process Control #3/5

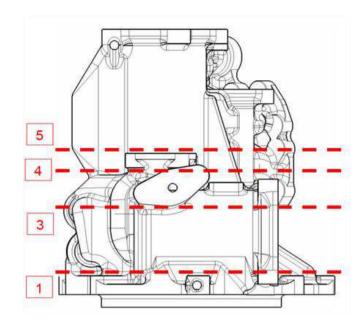
Master Part

- Part Hardness, Chemical Composition, Tensile test, Microstructure
- Coupons Hardness, Chemical Composition, Tensile test, Microstructure

Periodical Cut up (25th part, 50th part, 100th part, min 1 per year)


- Part Hardness, Chemical Composition, Tensile test, Microstructure
- Coupons Hardness, Chemical Composition, Tensile test, Microstructure

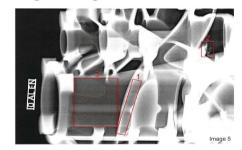

Production Part


- Part Hardness
- Coupons Hardness(*), Chemical Composition, Tensile test, Microstructure

Process Control #4/5

Specific attention on

- High stressed zones
- Downskin and upskin zones
- Unsupported zones


Process Control #5/5

Non destructive testing is exactly the same as the equivalent casting part

Visual Inspection

X-Ray iaw Pr-5200 (film) or Pr-5250 (digital) or other process approved by Quality department of Safran Aero Boosters

- ◆ Procedure: X-ray inspection procedure must be established by manufacturing source and approved by Safran Aero Boosters X-Ray Level III. Approval shall be based on design margins and manufacturing capabilities.
- Frequency: on every part, before or after machining
- Criteria: same as casting

FPI iaw Pr-5000 or other procedure approved by Quality department of Safran Aero Boosters

- ◆ Sensitivity: Liquid penetrant type 1A, sensitivity 2, developer "type A" dry
- Frequency: on every part, before and after machining
- Criteria : same as casting

"DVI": Safran management of Special Processes to support a Type Design #1/1

EN9100, EN9102 & EN9103 standard

DVI process from development to serial production (GRP 165: industrial validation)

Type design (Part21J):

Dimensionnal + manufacturing

req.+ (eg 04MTF217657)

Material requirement (eg

Ma2500)+ manufacturing Process

req (eg Pr7210) + airworthiness

limitations +...

Characteristics: Dimensional and other measurable characteristics

Key Charac included in material spec : Cut up, Sample, raw material, ...

Key Charac for Special Process to be controlled, incl raw material

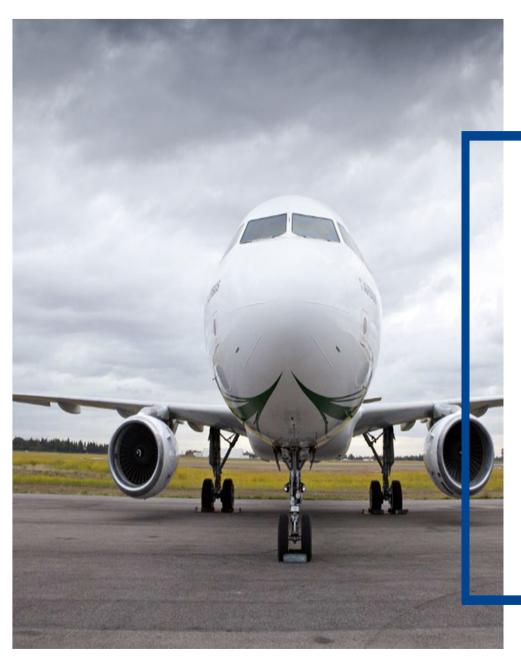
DVI structure (Part21G) DVI stored in Safran Quality base

Part Number

FAI (First Article Inspection)

Conformance to raw material spec

Key Process parameters list (PFMEA including AM files)


Key Charac tolerances & measures

Inspection plan

Key process parameters robustness (serial production capability)

DVI change control

5

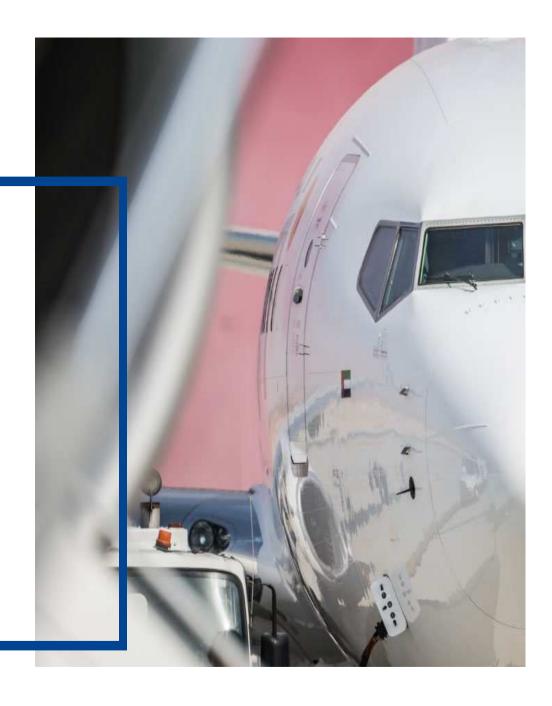
RISKS MITIGATION PLANS

Risks Mitigation Plan #1/1

Probability

On the Lube Unit Functions

On the Design Properties


	Risks		Quote /17	Risks mitigation plan		Current Status		
			Р			Р		
0	Risk of easily released particles	4	4	Several cleaning and a Final Acceptance Test are performed after final assembly removes the easily removed particles	1	1		
1	Risk of not easily released particles (in the field released)	4	4	A filter is located after the lub unit to catch the not easily removed particles	2	1		
2	Risk of sealing failure	16	2	All the sealing zones are machined, final roughness after machining is similar to casting	1	1		
3	Risk of hydrodynamic performance lost	4	4	Final Acceptance Test are performed after final assembly on each part	1	1		
4	Risk of dimensional conformity and variation (part to part)	4	4	Dimensional inspection on the maturation part shows a very good reproducibility	1	1		

	Risks		Quote /17	Risks mitigation plan	Current Status	
		С	P		С	Р
0	Risk of mechanical properties variations due to AM construction	4	3	The maturation parts are surrounded by 36 tests coupons and the design properties are built from these coupons. Production parts are surrounded by tests coupons	1	1
1	Risk of metallurgical soundness variation due to unsupported zone	2	4	Metallurgical soundness on unsupported zone is conform and a validated cut-up drawing is required	2	1
2	Risk of metallurgical soundness variation due to laser overlap zone	2	4	Metallurgical soundness on laser overlap zone is conform and a validated cut-up drawing is required	2	1
3	Risk of anisotropy due to building orientation	4	3	HIP and Solution heat treatment nearly delete the anisotropy	1	1
4	Risk of thermal ageeing unexpected behavior	2	4	Thermal aged coupons (static and fatigue) shall be evaluated	1	1
5	Risk of lower corrosion resistance	4	2	Salt Spray tests of anodized AM coupons confirm the corrosion resistance	1	1
6	Risk of lower mechanical properties aera due to very fine microstructure	2	3	Design properties are built from coupons with the same parameters and same metallurgical soundness as the maturation plan	1	1

6

CONCLUSIONS

LEAP-1A engine test

3315 engine start-up596 h of engine running time

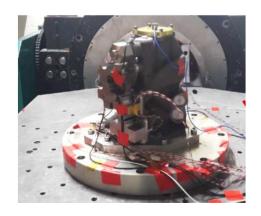
Engineering test

High temperature endurance with 3x certification duration

Pressure cycling: 2x certification cycles + 2000 burst pressure cycles without failure

Certification tests performed

Proof & burst


High temp.

Pressure cycling

Vibration

Low temp

Fire

Certification status

Certification test: Done

Fam Meeting with EASA/FAA: Done

TRL level: 6 (achieved in 18 months)

Certification report to be validated by 10/15

CAD Authorities validation by 11/30

Introduction rank: Unit 170 on LEAP-1A

POWERED BY TRUST

