

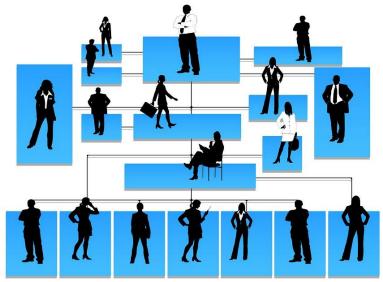
Mario Roch

Head of

Environmental and Sustainability Management

Agenda

- → Environmental Management EMAS
- → Importance of Energy Savings
- → Best Practises



EMAS-System: organisational structure

- → The responsibility for the successful implementation of an environmental management system (EMS) lies with the Management Board and with the executives in accordance with the line organisation of Flughafen Wien AG
- An appointed Environmental Manager conducts the operational management of EMAS

→ Appointed topic authors for specific environmental themes and aspects (Environmental Team) support the work of the Environmental Manager

EMAS-System: Documentation

Goal: Systematic and company-wide documentation of environmental protection measures ensures that risks and environmental impact are minimised going forward.

Clear in-depth and up-to-date description of individual processes leads to improvement of environmental performance in environmental standards and procedure instructions

Publications:

EMS-Manual

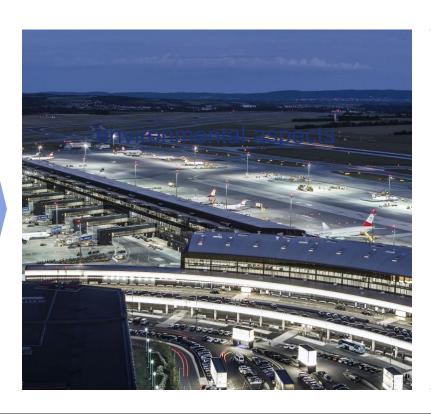
comprehensive manual gives a general overview of the EMS of FWAG

EMS-Procedure instructions

regulate EMS-procedures and processes

Environment-Procedure instructions

regulate relevant processes and responsibilities of each individual environmental topic


EMS: Content and environmental aspects

Environmental aspects (Vienna International Airport site and 19 Austrian subsidaries of FWAG)

Input

- Electricity
- Heating
- Cooling
- Materials/ Substances
- Fuel
- Water

Output

- Noise
- Airborne emissions
- Waste
- Waste water

VIE – a major consumer of energy

	Internal consumption	Total consumption on site	Maximum connected load
Electricy	93 GWh	141 GWh	32 MW
Heating	53 GWh	115 GWh	53 MW
Cooling	29 GWh	43 GWh	23 MW
Water	380.000 m ³	664.000 m ³	Well system (3 wells)
CO ₂	29.000 tonnes	58.000 tonnes	

Carbon footprint Vienna International Airport

Carbon footprint Vienna International Airport

Sphere of influence described in three scopes

Scope 1

... in the course of the business operations of the company from sources that the company itself owns and/or operates, e.g. vehicles, combustion plants

Scope 2

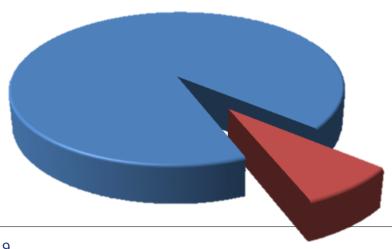
... as part of the generation by third parties of the energy consumed by the company, e.g. electricity, district heating and cooling

Scope 3

... in the supply chain or in the course of using the products or services sold by the company, arrival and departure of passengers and employees, transportation of goods, use of the airport by airlines

LTO = Landing-and-Take-off-Cycle APU = Auxilary Power Unit,

TWP = Engine tests


Carbon footprint Vienna International Airport

The Flughafen Wien Group can influence Scope 1 emissions directly, Scope 2 emissions only partially and Scope 3 emissions not at all

Emissions per scopes at the Vienna Airport site (in tonnes)

	2015	2016	2017
SCOPE 1	11,461	11,796	8,455
SCOPE 2	46,714	46,710	45,732
SCOPE 3	258,050	262,743	322,735
Total	316,225	321,249	376,922

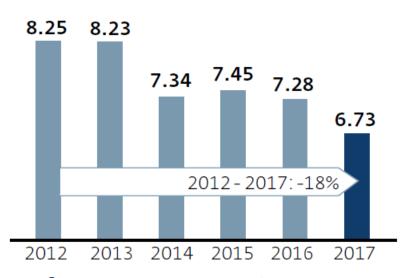
92% or 347,138 tonnes not directly influenceable by the airport operator

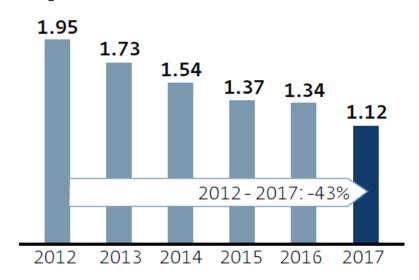
influenceable by the airport operator

Energy efficiency targets of FWAG

For the continuous improvement of the company's environmental performance, Flughafen Wien AG has set itself environmental targets with regard to individual environmental aspects.

Environmental aspect	Unit	Initial 2012 value	target value 2022	2012 – 2022 targeted efficiency increase	Value as of 2017
Electrical energy Flughafen Wien Group	kWh/TU ¹	4.42	3.49	21 %	3.52
Heat consumption Flughafen Wien Group	kWh/TU ¹	2.42	2.01	17 %	2.01
Cooling consumption Flughafen Wien Group	kWh/TU ¹	1.72	1.24	28 %	1.09
Fuel consumption Flughafen Wien Group	kWh/TU ¹	1.41	1.17	17 %	1.20
Greenhouse gas CO ₂ Flughafen Wien Group	kWh/TU ¹	1.95	1.36	30 %	1.12




Key performance indicators

Total energy requirements in kWh/TU

CO₂ Emissions in kg/TU

Water consumption

	Unit	2015	2016	2017
Water consumption FN/AC	I/TU	17.3	18.4	16.8
Water consumption FWAG	m³	427,931	468,169	445,698
Wasta water	I/TU	16.2	14.8	14.0
Waste water	m³	401,152	376,799	371,511

Key performance indicators

Electricity consumption FAWG in kWh/TU

Heat consumption FWAG	kWh/TU	2.33	2.29	2.01
Heat consumption FWAG	MWh	57,734	58,315	53,304
Cooling consumption FWAG	kWh/TU	1.31	1.25	1.09
Cooling consumption FWAG	MWh	32,557	31,856	28,846

Key performance indicators

Waste

	Unit	2015	2016	2017
Total waste	kg/TU	0.15	0.15	0.17
Total waste	tonnes	3,650	3,887	4,457
Tatallia sanda usus sta	kg/TU	0.01	0.01	0.01
Total hazardous waste	tonnes	145	147	151
Industrial waste	kg/TU	0.09	0.10	0.11
	tonnes	2,240	2,597	2,981
Danar and cardboard	kg/TU	0.01	0.02	0.02
Paper and cardboard	tonnes	360	398	414

Fuel consumption FWAG	kWh/TU	1.13	1.20	1.20
Fuel consumption FWAG	MWh	28,041	30,447	31,733

The importance of energy saving


- → Financial savings (reduction in operating cost)
- → Considerate handling of available resources
- → Avoidance of huge investments into technical infrastructure (Savings in investment cost)
- → Enhancing competitiveness
- → Official requirements for the 3rd runway
- → Energy demand for future projects which are already included in the development plan 2025
- → achievement of the EU stated climate targets (particulary substantial CO₂ reduction) despite continuing growth

What we have done so far....

- → EMAS an environmental management system implemented
- → Own department for energy management was implemented in 2015
- > more than 200 optimisations in the central building control system
- → Recirculation dampers
- → Conversion to LED
- → Heat recovery
- → Optimisation of operating hours
- → Free Cooling (the optimization of cooling plants through the use of natural ambient cold)

Office Park 4 – Energy-efficient and sustainable

Office Park 4 – Energy-efficient and sustainable

Goals

- Modern office and working environment (25.000 m²)
- Communicative hub
- Essential element in developing the Airport City
- New urban center
- Designed dynamic venue
- Multifunctional
- Energy-efficient and sustainable

Success factors

- Providing redundant high-performance- IT
- Attractive open space design
- Communication zones in the building and outside
- Retail, Kindergarten and gastronomy on location
- Event and presentation area
- Outstanding connection to public transport and the Airport City

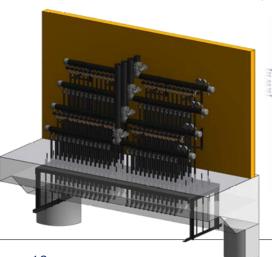
Office Park 4 – Energy-efficient and sustainable

- > Focus on energy efficiency already at the point of conceptualisation
- → Requirements for the general planners : high competence in the field of energy efficiency, sustainable planning and building simulation
- → Cooperation between general planners and the Technical University Vienna (TU)
 research and development support results in optimization
- → Office Park 4: Low energy standard with passive house characteristics
- → DGNB pre-certificate in platinium already received from the Austrian Association for a Sustainable Real Estate Industry (ÖGNI)
- → Geothermal Energy bored piles equipped with absorber lines and brine/water heat pump in the planning
- → Building simulations by a computer-assisted "virtual city", which can simulate and estimate the effects of measures and management decisions on the consumption of energy, cooling or heat.
- → Highly insulating facade
- → Intellegent controll of the night ventilation system
- → Highly efficient ventilation system
- → Efficient electrical systems (i.e. LED lighting)

Office Park 4 – Geothermal energy

Geothermal Energy

441 bored piles equipped with absorber lines,


10-18m long, about a metre in diameter, reinforced concrete, with brine water piping;

The system covers

→ 94% Heating energy consumption

→ 45% cooling energy consumption

in the period of one year

Smart Airport City

/erbrauchsanalyse

Darstellung von Grenzwert-

Goals and tasks

- → Energy-efficient building operation
 - by automated trending, analysis and response to environmental inputs
- * Reduction of load and energy use
 - > Improving infrastructure use
 - Exploiting cross-location synergies
- → Research and Development Project (R&D Project)
- → Project period: till end of March 2020

Consortium: w

und Dashboards

Logik & Regelwerk

Funding agency: Forschungsförderungsgesellschaft

Kennzahlen

Vienna International Airport: Virtual City

Virtual City and virtual buildings

In 2017, Flughafen Wien AG, together with the University of Technology initiated a research and development project to visualise the consumption of electrical energy and the supply of individual buildings with cooling and heat.

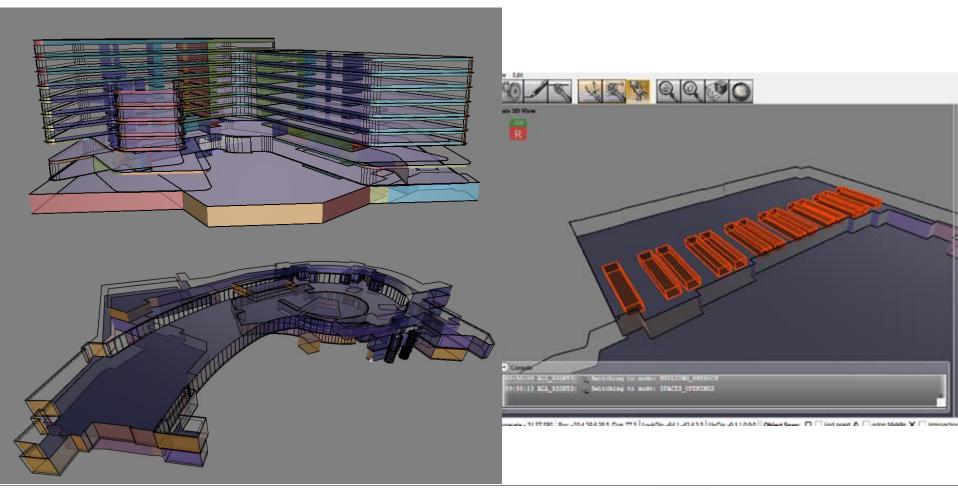
This project is developing a prototype of a computer-assisted "virtual city", which can simulate and estimate the effects of measures and management decisions on the consumption of energy, cooling or heat. First scenarios for Office Park 4, Pier East,

Terminal 2 and enlargement of terminals to the south

Research and Development Project (R&D Project)

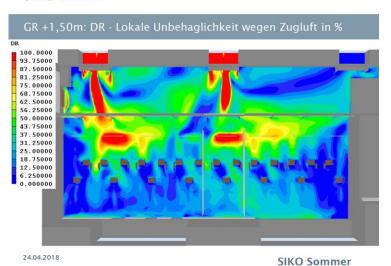
Project period: 8 years

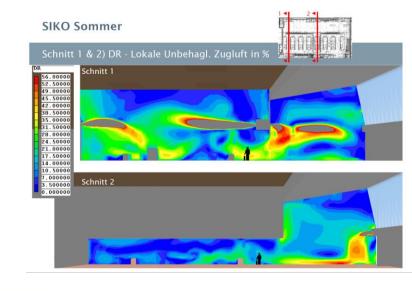
Schöberl & Pöll GmbH

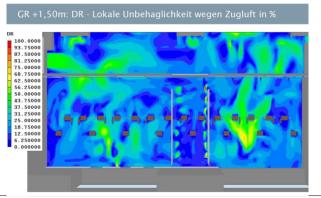


Vienna International Airport: Virtual City

The "Virtual City" grants a holistic view at the Vienna Airport System




Vienna International Airport: Virtual City



Detailed analysis of indoor air flow

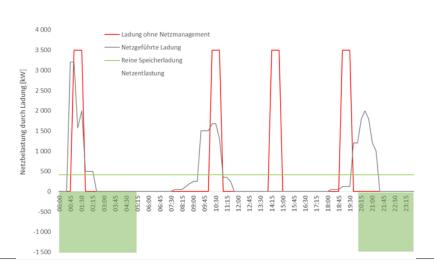
SIKO Winter

Example: Security check area

E-Mobility

CO₂-neutral E-Port

- → Mobile and stationary power storage units will enhance efficiency and sustainability of Vienna Airport
- → Research Project
- → Project period: 4 years
- → Funding agency: Forschungsförderungsgesellschaft



E-Mobility

Annual savings potential

- → 1.5 GWh less energy demand
- → 1,400 t less carbon emissions
- → 375,000 litre diesel
- → 365,000 € cost for diesel

Consequences of E-Mobility

- → More electic energy 2.2 GWh (up to 14 GWh for the complete conversion)
- Project "Virtual City" E-Mobility is a very important component – therefore must be taken into foresighted consideration
- Charging strategy in conjunction with power grid and operation
- Mobile and stationary power storage units have to be implemented for the purpose of grid stabilisation and to participate in the control energy market

Photovoltaic systems (PV) at Vienna Airport

3 photovoltaic systems at the site

- → Technical Data (in total)
 - → Installed capacity: 1,300 kWp
 - → Electricity: up to 1,500.000 kWh/year
 - → Installed area: 8.000 m²
 - → Reduction CO₂: up to 900 tonnes/year
 - → 20% of the electricity needs covered

Photovoltaic systems (PV) at Vienna Airport

Photovoltaic systems - 2018

- → Roof treatment plant
- → Installed capacity: 715 kWp
- → Electricity: up to 750.000 kWh/year
- → Reduction CO₂: up to 450 tonnes/year

Photovoltaic systems 2019 (under examination)

- → Multi-storey car parks
- Office Park 4
- → Hangar 6

Everyone can contribute.....

- → Lowering shutters to avoid that rooms get even more heated by the solar radiation
- → Switch off the lights
- → Proper clothing in Winter and in Summer
- → Develop higher tolerance towards temperature
- → Switch off your computer, screen and printer
- → In Winter quick ventilation is better than continuously tilted windows
- → Use the stairs instead of using the elevator

Conclusion:

4 STAR AIRPORT
SKYRAX

- Identify your main energy users
- Crop "low hanging fruits" first (minor investments => quick results)
- → Use "Best Practice"
 - > benchmark yourself with other airports
- → Avoide to extend your conventional enenergy infrastructure
 - ➤ Go for Solar Energy!
 - Go for Geothermal Energy!
- Try to get financial subsidies for projects with high environmental protection effect and a long payback period (ROI)
- → Make your efforts public
 - > "We care about energy efficiency/ environment...."

Contact

Mario Roch

Head of Environmental- and Sustainability Management Operations Department

Flughafen Wien AG PO BOX 1, 1300 Wien-Flughafen

Tel. +43-1-7007-22029

Email: m.roch@viennaairport.com

